
Contention in Concurrent Data Structures

JOEL GIBSON

SID: 311199828

Supervisor: Dr Vincent Gramoli

This thesis is submitted in partial fulfillment of
the requirements for the degree of

Bachelor of Science (Advanced Mathematics) (Honours)

School of Information Technology
The University of Sydney

Australia

June 9, 2015

Student Plagiarism: Compliance
Statement

I certify that:

I have read and understood the University of Sydney Student Plagiarism: Coursework Policy
and Procedure;

I understand that failure to comply with the Student Plagiarism: Coursework Policy and Pro-
cedure can lead to the University commencing proceedings against me for potential student
misconduct under Chapter 8 of the University of Sydney By-Law 1999 (as amended);

This Work is substantially my own, and to the extent that any part of this Work is not my own
I have indicated that it is not my own by Acknowledging the Source of that part or those parts
of the Work.

Name: Joel Gibson

Signature: Date:

i

Abstract

Mutual-exclusion locks are a common mechanism for protecting shared data in a concurrent
environment. However, as machines with tens or hundreds of cores become more common
in database systems, the poor scaling properties of locks become problematic. Various lock-
free data structures have been proposed as a solution to these problems which work well in
practice, however the analysis of their asymptotic complexities has not kept pace with their
practical development. Most lock-free algorithms have no accompanying proof of running
time, and whenever proofs are given, they are often very complicated, partly in due to authors
striving to achieve a bound in terms of the tightest possible notion of contention.

I present new theoretical results about contention as it is used in the analysis of lock-free
data structures, showing two commonly used measures of contention equivalent. I use these
results to provide a simplified proof of a lock-free linked list, and suggest a modification which
increases performance without changing the asymptotic complexity. I implement four state-of-
the-art concurrent linked list algorithms in C and experimentally evaluate their performance
under a wide range of conditions, showing that contention has an observable impact on per-
formance, and exploring the scaling properties of both lock-based and lock-free structures.
Finally, I suggest directions for future work in both practical and theoretical areas.

ii

Contents

1 Introduction 1
1.1 Contributions . 2

2 Background 3
2.1 Desirable properties of concurrent data structures 3
2.2 Implementation of non-blocking data structures 6
2.3 Contention . 7
2.4 Concurrent search structures . 9

3 Measures of contention 12
3.1 Model . 12
3.2 The interval graph and simplicial vertices . 14
3.3 Equivalence of overall point and interval contention 16
3.4 Bounds for overall process and overlapping-interval contention 18
3.5 Conclusion . 18

4 Linked Lists 19
4.1 Harris’ List . 19
4.2 Fomitchev & Ruppert’s List . 21
4.3 A modification of Fomitchev & Ruppert’s list . 23
4.4 The Lazy List . 24
4.5 The Versioned List . 25
4.6 The Universal Construction . 26

5 Experimental Evaluation 28
5.1 Experimental settings . 28
5.2 A standard workload . 30
5.3 The effects of contention . 34
5.4 The modification of Fomitchev & Ruppert’s list . 37
5.5 Summary of experimental results . 38

6 Conclusion 40
6.1 Future Work . 40
6.2 Conclusions . 43

iii

List of Figures

2.1 Pseudocode of the compare-and-swap primitive. 6
2.2 An example execution . 8
2.3 The effects of helping on the running time . 9

3.1 An example execution involving 3 processes and 8 operations 13
3.2 The interval graph of the set of intervals shown in Figure 3.1 14
3.3 A set of pairwise intersecting intervals always have a point in common 15
3.4 An example worst-case construction with n = 9 and k = 3. 18
3.5 Overall overlapping-interval contention can be large 18

4.1 A naive deletion scheme leads to lost deletions. 20
4.2 The two-step deletion of Harris’ linked list . 20
4.3 The three-step deletion of Fomitchev’s linked list 22
4.4 The wait-free Contains operation . 23
4.5 A naive linearisation of the wait-free contains . 24
4.6 The universal linked list operations . 27

5.1 A uniform workload on a 32 hyperthread machine 31
5.2 A uniform workload on a 64 core machine . 32
5.3 A highly contended workload on a 64 core machine 35
5.4 Effective updates under a highly contended workload 36
5.5 Performance of the Fomitchev & Ruppert modification 39

6.1 A good case for eager helping . 40

iv

Chapter 1

Introduction

Traditionally, systems built to handle a high level of concurrency have used sequential data

structures protected by mutual exclusion locks to ensure data consistency. Wherever this has

impacted performance, more concurrency-friendly locking strategies have been applied, such

as readers-writer locks, or by pushing the locks inside the data structure itself to achieve a more

fine-grained locking approach. However, it is becoming common today to see machines with

tens or hundreds of cores and multiple terabytes of shared memory, so completely in-memory

databases or caches are becoming viable. At this scale, the inherent costs and complications of

locking become problematic: a better approach to concurrency is needed.

Lock-free data structures offer an alternative approach to synchronisation, relying on atomic

primitives rather than mutual exclusion to ensure consistency and safe access to shared data.

The absence of locks makes lock-free structures immune to common problems such as dead-

locks, priority inversion, and convoying, while the strong progress guarantees of lock-free

structures makes them resilient to poor scheduling decisions, and tolerant of thread failures.

These progress guarantees also make it possible to, in some cases, put an upper bound on

the total number of steps the system must execute in order to complete a series of operations.

This bound includes a contention parameter, a measure of the number of operations simulta-

neously accessing the data structure. These types of bounds are not achievable for lock-based

structures, since the scheduler could at any point suspend a thread, blocking other threads

indefinitely.

As lock-free data structures become more common, there is a growing need for good the-

ory backing up their observed practical performance. Furthermore, lock-free data structures

should be compared against recent lock-based data structures in order to evaluate the merits

and drawbacks of each.

1

CHAPTER 1. INTRODUCTION 2

1.1 Contributions

My main contributions to this area of research are in the analysis of lock-free data structures,

and the experimental evaluation of recent high-performance concurrent linked lists. I take ex-

isting measures of contention used in the (amortised) analysis of lock-free data structures and

analyse them, showing the point contention, process contention, and interval contention are

equivalent. I use this theoretical result to simplify the proof of complexity of an existing data

structure, and also make practical improvements to the algorithm itself. I conduct a survey

of existing concurrent linked-list algorithms, testing their performance under varying work-

loads to show that contention is a factor that cannot be ignored. Finally, I suggest directions

for future work based off the ideas presented here.

In Chapter 2, I go over some necessary background about lock-free data structures and their

implementation. Following this, I introduce the definitions of contention that are currently

used in the analysis of lock-free data structures, and comment on how the point and interval

contention have been used recently. I finish by performing a survey of the literature, focusing

on practical lock-free linked lists and their lock-based alternatives.

In Chapter 3, I take the interval and point contention, two measures of contention that are com-

monly used today in the analysis of non-blocking data structures, and show their equivalence

in an amortised context. This is shown by relating an execution to its corresponding interval
graph, and using properties of interval graphs to put a lower bound on the overall point con-

tention in terms of the overall interval contention. I show the tightness of these bounds, and

briefly discuss related bounds for other definitions of contention.

In Chapter 4, I select five concurrent linked list algorithms from the literature and outline their

design, commenting on their complexities where possible. Of these five, four are state-of-

the-art high-performance linked lists, and the other is a linked list produced from a universal

construction. I use the theoretical results developed in Chapter 3 to provide a simplified proof

of the running time of one list, and create my own modification which performs better in

practice.

In Chapter 5, I present results from the experiments I conducted on the lists, showing the

differences between locking and lock-free data structures. I show that the effects of contention

are observable and non-negligible in practice, and finish by evaluating my modifications to the

linked list from Chapter 4.

In Chapter 6, I discuss the impact of my work, and outline future directions in which this work

could be taken before concluding.

Chapter 2

Background

In this chapter, I review the current literature on concurrent data structures. I begin by looking

at desirable properties of concurrent data structures, including the linearisability correctness

condition, several non-blocking progress guarantees, and degree of concurrency. I then ex-

plain how these data structures are usually implemented using atomic primitives on shared-

memory systems, along with some common implementation considerations. Next, I address

different definitions of contention used currently in the literature on lock-free data structures,

which motivated the main theorems of Chapter 3. Finally, I survey a range of both blocking

and non-blocking concurrent data structures presented in the literature, some of which are

discussed in detail in Chapter 4 and experimentally evaluated in Chapter 5.

2.1 Desirable properties of concurrent data structures

Correctness

Classical data structures execute in a sequential environment, where their correctness is rel-

atively easy to reason about because of the single thread of execution. This ease of reason-

ing extends to simple concurrent data structures created by taking an existing sequential data

structure and serialising access to it by using a lock. However, in a highly concurrent data

structure it is desirable to have multiple readers and writers inside the data structure at the

same time, causing the execution intervals of operations to overlap, or even properly contain

each other. In this setting it becomes less clear as to what a “correct” execution is.

Linearisability [HW90] was proposed as a correctness criterion which allows programmers to

carry over their intuition and reasoning about abstract data types from a sequential setting into

a concurrent one. Informally, a data structure is linearisable if every operation appears to have

taken place atomically at some point between its invocation and its response, such that these

3

CHAPTER 2. BACKGROUND 4

linearisation points can be identified and used to identify an equivalent legal sequential history.

Linearisable operations have intuitively ”correct” behaviour, in the sense that a linearisable

data structure will behave (from a correctness standpoint) as if it were a sequential data struc-

ture protected by a mutual exclusion lock [Fra04]. Linearisability is also compositional: using

linearisable data structures, new linearisable data structures can be built [HS12]. This is an

important property, since it allows (for example) the designer of a lock-free hash table to use

any lock-free linearisable set in the place of separate chaining.

There have been alternative correctness criteria suggested, for example Howard and Walpole

[HW13] propose a data structure which is relativistic, in the sense that it is permissible for

each concurrent reader to observe a different sequence of updates (each reader is in a differ-

ent “frame of reference”). They argue that for data structures which do not have an inherent

time order such as a key-value store, with independent or commutative updates, this model

is acceptable. However, this criterion is only appropriate in certain circumstances, is not com-

positional, and can be confusing to reason about, whereas linearisability appears to be a more

useful and intuitive criterion in general.

Progress guarantees

Mutual exclusion, or locking, is one of the most common ways of allowing safe access to data

on a shared-memory computer. Unfortunately, the use of mutual exclusion comes at a cost.

There are known problems such as deadlocking, priority inversion, and convoying, leading to

disadvantages in fault-tolerance and scalability [GC96]. Recently, non-blocking data structures

with much stronger progress guarantees have become popular, partly due to their inherent

immunity to these problems. The main progress criteria used in non-blocking1 data structures

are outlined below.

The first property is lock-freedom: a data structure is lock-free if some operation will always

complete after a finite number of steps have been executed system-wide. This ensures that

even in the case where all but one process is suspended (through, for example, pre-emption)

the remaining process can still complete its operation, no matter what state the data structure

was left in by the incomplete operations. Usually this requires operations to leave enough

information in the data structure that another operation, obstructed by the partially completed

changes, can perform helping to complete the partial changes and proceed. The running time

of a single lock-free operation can be arbitrarily long if it is forced to help new operations or

retry repeatedly.

The second property is wait-freedom: a data structure is wait-free if every operation will finish

1There a few different common uses of the terms “non-blocking” and “lock-free’ in the literature, I use the
definitions from [HS12].

CHAPTER 2. BACKGROUND 5

after a finite number of steps, ensuring that no process is ever live-locked or starved. If a

strict upper bound can be placed on the running time of every operation, it is called bounded
wait-free. Wait-freedom is a strictly stronger property than lock-freedom, in the sense that

every wait-free data structure is automatically lock-free, but not vice-versa. Wait-freedom is

a much fairer condition than lock-freedom, but is difficult to implement since fair access to

memory is usually not guaranteed, and is further complicated by underlying factors such as

cache coherence algorithms, over which the programmer has no control.

The third property is called obstruction-freedom, which guarantees progress to any process even-

tually executing in isolation [HLM03]. This is weaker than the two previous criteria, since it

does not guarantee progress when two or more processes are executing concurrently. It was

introduced as a more practical alternative to lock-freedom, however it requires that some other

scheme external to the algorithm itself, such as exponential backoff, is employed during con-

flicts.

All three of the above properties preclude the use of locks, but apart from that have mixed

guarantees about progress. Wait-freedom is ideal, but usually very hard to achieve efficiently,

so is not used often in general data structures. Obstruction-freedom is easier to achieve than

lock-freedom, but relies on some out-of-band mechanism of ensuring that threads can execute

in isolation to do their work. Lock-free algorithms perform well in practice while not relying

on out-of-band progress mechanisms, or paying heavy overhead costs to ensure wait-freedom.

Degree of concurrency

The above progress guarantees are quite strong, but by themselves may not be indicative of

good performance. For example, in most universal constructions (discussed later), any two

processes executing updates concurrently will always conflict, and so there is a lot of wasted

work, and throughput will in general not be higher than an equivalent sequential data struc-

ture protected using a mutual exclusion lock.

One possible idea for a concurrency metric proposed in [GKR12] is to fix some base sequential
specification of a data structure, and extract the subsequence of steps (reads and writes) a con-

current algorithm takes which are part of the sequential specification. An interleaving of these

subsequences for one or more processes is called a schedule, and the concurrency metric is the

set of all schedules a concurrent algorithm accepts (would be observable in some execution).

For example, a schedule accepted by a sequential data structure protected by a mutual ex-

clusion lock would just be a number of sequential executions concatenated together. A finer

grained locking scheme would accept strictly more schedules, as it would permit some inter-

leaving of individual reads and writes within high-level operations, so it would have a higher

degree of concurrency.

CHAPTER 2. BACKGROUND 6

2.2 Implementation of non-blocking data structures

On shared memory systems (such as most commodity hardware), any synchronisation be-

tween different processor cores or processes is done implicitly, through the cache control pro-

tocol implemented by the manufacturer [Sco13]. The underlying architecture makes avail-

able some synchronisation primitives to the programmer which usually take the form of atomic

read-modify-write instructions, such as compare-and-swap, whose pseudocode is shown in

Figure 2.1. In addition to this, certain instructions are guaranteed to execute atomically, for

example on the x86 architecture, loads and stores on aligned memory words are atomic.

Compare-and-swap allows a caller to update a memory location on the condition that it cur-

rently contains a certain value. If it does not (for example the location was modified by another

thread), the compare-and-swap will report a failure, and the caller can handle it appropriately.

This all-or-nothing action makes compare-and-swap the main synchronisation primitive used

in most current lock-free algorithms.

procedure CAS(addr, oldval, newval)
Do the following atomically:
if ∗addr = oldval then
∗addr ← newval
return oldval

end if
return ∗addr

end procedure

Figure 2.1: Pseudocode of the compare-and-swap primitive. An asterisk ∗ denotes a pointer
dereference in the style of C.

Compare-and-swap (henceforth CAS) is a universal primitive, meaning it can be used to solve

the n-process consensus problem for any n [Her91]. Another such primitive is load-link/store-
conditional, which are a pair of instructions, one performing a load from a memory location,

and the other one performing a store to the same location only if that memory location has

not been modified since the load-link. Such primitives are important, since various universal

constructions rely on their existence. However, on current hardware the primitives operate

only on single memory words, which makes more refined implementations of non-blocking

data structures difficult. All of the lock-free data structures presented in Chapter 4 are built

using single-word CAS.

Helping and retrying

Lock-free data structures often have more complex operations than their sequential counter-

parts. If there is more than one modification (a modification being an atomic step changing the

CHAPTER 2. BACKGROUND 7

data structure, like a CAS operation) necessary for an operation to complete, the operation is

written in a re-entrant style so that if a process is suspended or pre-empted, other processes can

notice the partially completed operation and carry out the required modifications to complete

it. When a process does this on behalf of another, this is called helping.

Similarly, a process may be pre-empted by another between reading a memory location and

attempting a CAS operation, causing a failed CAS. After this, the operation must restart from

some earlier point, such as the start of the data structure. This is called retrying.

Because a single high-level operation in a lock-free data structure may be forced to retry or

help other operations repeatedly, we cannot put an upper bound on the number of steps a

single operation takes. Instead, the amortised step complexity2 of an operation is given, which

is the total number of steps taken by all operations, divided by the number of operations in the

execution.

The work necessary when performing helping and retrying affects the asymptotic complexity

of the data structure. Operations which are concurrent with only a small number of other

operations will be affected much less than operations concurrent with many other operations,

and this must be taken into account in any bound on the running time of a lock-free data

structure. To do this, several measures of contention have been suggested.

2.3 Contention

When attempting to bound the overall running time of non-blocking data structures, often the

size of the data structure n is not enough. For example, some structures logically delete ele-

ments before physically removing them from the structure, so although the structure contains

n nodes, it may only contain n − p elements if there are p concurrent processes. Furthermore,

operations may have to perform extra work in the form of retrying or helping, due to the effects

of concurrent operations. Another contention parameter is needed, which will provide some

measure of the number of concurrently executing processes or operations. There are several

existing notions of contention currently used in the analysis of lock-free data structures.

The interval contention cI of an operation is the number of operations concurrent with a given

operation. An amortised bound on step complexity in terms of the interval contention is rela-

tively easy to obtain by making operations charge each other for steps that would usually be

unnecessary in a sequential execution. Provided each operation charges any other concurrent

operation a constant amount at most a constant number of times, this leads naturally to an ad-

ditive amortised O(cI) term. Unfortunately, the interval contention of an individual operation

can be arbitrarily large in a system involving as few as two processes.

2Step complexity is the number of steps required to complete a computation, given an unbounded number of
processors.

CHAPTER 2. BACKGROUND 8

The point contention cP of an operation is the maximum number of processes active at any

time during the operation [AF03]. An amortised bound on the step complexity in terms of the

point contention of a data structure is usually quite involved, for example the proofs in [FR04;

Ell+14] rely on reasoning about the interleavings of individual CAS steps inside concurrent

operations. Some authors [OS13; CNT14] have provided modifications of their algorithms

which perform extra helping so that they can tighten what would otherwise be a bound in

terms of the interval contention to a bound in terms of the point contention. Since for any

given operation, the interval contention is always at least as large as the point contention, this

seems like a better bound.

Figure 2.2: An example execution on 4 processes. The bolded operation has point contention
3, process contention 4, and interval contention 5.

The process contention cK of an operation is the number of processes ever active during the

operation. This was the original definition of interval contention [AST02]. The overlapping-
interval contention cOI of an operation is the maximum interval contention over all operations

overlapping with that interval. It was introduced in [OS13], but seems relatively unused in the

literature otherwise. It is included here for completeness.

Relating helping to contention

My result, that point contention and interval contention are amortised equivalent, challenges a

popular view that increasing the amount of helping done by operations can reduce the asymp-

totic step complexity of data structures. I will briefly outline why this view might be held.

Proofs of the asymptotic complexity of lock-free data structures are often done by getting op-

erations to “charge” each other for steps that would be unnecessary in a sequential execution,

for example helping or restarting. During the analysis of the skiplist given in [OS13], the au-

thors reason that an inconsistency caused by an update may be encountered by every traversal

concurrent with that update, and so the update may be charged O(cI) times. This leads to an

additive term of O(cI) in the amortised step complexity of the operation. The authors then

argue that by making the traversals perform extra helping so as to resolve this inconsistency,

the update will be charged at most O(cP) times (since a traversal may not proceed without

first resolving the inconsistency). The analysis of the lock-free binary search tree in [CNT14]

follows a similar argument. A sketch of this idea is illustrated in Figure 2.3.

CHAPTER 2. BACKGROUND 9

(a) Without helping. (b) With helping.

Figure 2.3: In this figure, intervals represent operations, shaded boxes represent helping or
trying to fix an inconsistency, and clear boxes represent operations taking extra steps because
of an inconsistency. The top long-running operation introduces an inconsistency (such as a
logical deletion) and attempts to resolve it. Without helping, O(cI) operations may observe
this inconsistency. With helping, at most O(cP) operations may observe (and try to fix) this
inconsistency.

2.4 Concurrent search structures

Universal constructions

There are several known universal constructions for creating lock-free or wait-free data struc-

tures from existing sequential specifications, using only atomic loads, stores, and a universal

synchronisation primitive (such as CAS). Usually these constructions result in very inefficient

implementations in practice, due to their generality.

A method of taking a sequential specification of a data structure and producing a lock-free

data structure using CAS is described in [Her93]. The core idea is that all accesses to the data

structure go through a shared pointer, and any updates will read the pointer, make a full local

copy of the data structure where they apply their update privately, then attempt to swing the

shared pointer to their local copy using CAS. If the pointer has been modified in the meantime

by a concurrent update, the process will restart its update operation.

There is an obvious overhead of copying the data structure for every update. This can some-

times be overcome: for example if the data structure is a balanced tree on n nodes, then an

update operation need only make copies of O(log n) nodes along the path from the modifica-

tion site to the tree root. Despite optimisations such as this, the construction suffers in practice

because all updates conflict at the root pointer, which effectively serialises accesses to the data

structure. While this construction is lock-free, it exhibits a poor degree of concurrency.

A different kind of universal construction is described in [TSP92], which can take any deadlock-

free lock-based data structure, and transform it into a lock-free data structure. The idea of this

construction is to replace locks with lists of virtual instructions which must be completed be-

fore the lock is relinquished, so that other processes can perform helping by taking ownership

of the “lock” and performing these tasks. This addresses the problem of serialised access,

and the resulting data structure has the same degree of concurrency as the original lock-based

CHAPTER 2. BACKGROUND 10

structure. However, in performance is poor in practice because of the high overhead of creating

and interpreting these lists of instructions.

Linked lists

There are are a few very efficient lock-free linked list implementations known which use CAS.

The first lock-free linked list using only single-word CAS was presented in [Val95]. It has a

high degree of concurrency, but involves leaving “auxiliary nodes” between regular nodes of

the list to cope with problems arising from concurrent deletion. These auxiliary nodes can

grow into long chains, leading to poor performance.

Harris refined these ideas to create a lock-free linked list implementing an ordered set [Har01].

His approach does not require auxiliary nodes, instead using a “tagged reference” (a word

holding both a pointer and a boolean) to indicate logical deletion, and separating the logical

deletion of a value from the set from the physical removal of its node from the list. The Harris

list is one of the best performing lock-free lists known.

Fomitchev and Ruppert expanded on Harris’s ideas to create a lock-free linked list with an

amortised step complexity per operation of O(n+ cP), where n is the number of values stored

and cP is the point contention of an operation [FR04]. It uses a more complicated deletion

process than the Harris list which sets backlinks, so that operations which encounter logically

or physically deleted nodes can backtrack through the list rather than restarting from the front.

On the other hand, there are some very efficient concurrent lock-based linked lists. The Lazy

list [Hel+06] uses per-node locks in a different way than standard hand-over-hand locking,

achieving a much higher degree of concurrency. Traversals proceed without acquiring locks

until they reach nodes to be modified, at which point they acquire the locks on adjacent nodes,

then validate that the data in those nodes has not been changed since it was examined before

locking. The contains operation acquires no locks, and is wait-free.

Recently, a new linked list has been proposed which uses versioned locks, which are locks that

carry an accompanying “version number” indicating how many times they have been locked.

The versioned list [Gra+15] is quite similar to the lazy list, but locks are acquired only if work

can be performed, and this structure achieves very good performance by keeping its critical

sections very small.

Logarithmic search structures

A skip list is a probabilistic search structure first described by Pugh [Pug90], which has ex-

pected logarithmic time for lookup, insertion, and deletion. Skip lists are easier to implement

than self-balancing binary search trees (such as AVL trees or red-black trees), and in a concur-

CHAPTER 2. BACKGROUND 11

rent environment this seems to be doubly the case, where many efficient lock-free skip lists are

known, and no efficient lock-free self-balancing trees are known.

In his thesis, Fraser describes an implementation of a lock-free skip list, loosely based on Har-

ris’ linked list [Fra04]. Fomitchev and Ruppert also describe a skip list based on their own

linked list. Although it is clear that these structures have expected O(log n) operation times

when operating sequentially, no analysis was provided by Fraser or Fomitchev and Ruppert

to determine the complexity in a concurrent environment. Oshman and Shavit describe a very

similar skip list as part of their SkipTrie data structure [OS13], and sketch a proof of it having

expected amortised time of O(h+ cI), where h is the height of the skip list.

Lock-free binary search trees appear to be extremely hard to create, even when unbalanced.

The first correct lock-free binary search tree was published in 2010 [Ell+10], and uses an exter-

nal tree structure, where data is stored in external nodes and internal nodes are used only for

routing purposes. A more recent binary search tree using external nodes includes an amortised

bound on the step complexity of any operation of O(h + cP), where h is the height of the tree

at the start of the operation and cP is the point contention of the operation [Ell+14]. Another

recent binary search tree uses the technique of threading backlinks through the tree so that

restarting operations do not have to backtrack far [CNT14]. They prove an amortised bound

on the step complexity of O(h + cI), but point out that it can be “tightened” to O(h + cP) by

introducing extra helping into their algorithm. Note that none of the binary search trees above

are balanced, and so they may be expected to have logarithmic height only when the input

values are drawn uniformly at random.

Chapter 3

Measures of contention

In this chapter, I analyse the four definitions of contention stated in Chapter 2 in an amortised

context. Surprisingly, the point contention, process contention, and interval contention are

all amortised equivalent, in the sense that when summed across every operation the interval

contention is no larger than twice the point contention.

To show this, I use the theory of interval graphs: graphs formed from a set of real intervals

by replacing intervals with vertices, and connecting vertices whenever their corresponding

intervals overlap. By using the existence of at least one special simplicial vertex which forms a

clique with its neighbourhood, I construct a lower bound on the point contention and use this

to bound the ratio of the interval to the point contention.

3.1 Model

I assume a standard asynchronous model of computation, where any number of processes take

steps which may be interleaved arbitrarily. These processes execute high-level operations (for

example, add, remove, and contains on a concurrent set structure) all of which have an invo-

cation time and a response time. There are no bounds on the relative speeds of the processes.

What follows is a model which captures this, and is useful for my purposes.

Define a finite execution α = (O, P, I, π) involving P processes to be a finite set O of operations,

along with two mappings I and π. The interval function I : O → R × R maps operations to

the compact real intervals representing their execution times, with the left endpoint being the

invocation time and the right endpoint being the response time. The process function π : O →
{1, . . . , P} assigns a unique process to each operation, representing the process which executed

that operation.

If for two operations op, op′ ∈ O we have I(op) ∩ I(op) 6= ∅, then we say that op and op′ are

12

CHAPTER 3. MEASURES OF CONTENTION 13

A B

C D E F

G H

Figure 3.1: An example execution involving 3 processes and 8 operations. The operationB has
point contention 2, process contention 3, and interval contention 4.

concurrent, or that they overlap. For any execution we require that I is injective1, and that the

execution should be well-formed: any two operations mapping to the same process should not

be concurrent. Figure 3.1 shows an example of a finite execution.

I will briefly recall the definitions of contention. The point contention cP is the maximum

number of processes active at any point in time during the operation. The process contention

cK is the number of processes ever active during an operation. The interval contention cI is

the number of operations concurrent with the given operation, and the overlapping-interval

contention cOI is the maximum interval contention over all operations overlapping with the

given operation. In terms of the model given above, these may be formally defined as follows:

Definition 1. In a finite execution α = (O, P, I, π), the point contention cP , process contention cK ,
interval contention cI , and overlapping-interval contention cOI are functions O → Z+ defined by:

cP (op) = max
x∈I(op)

∣∣{op′ ∈ O : x ∈ I(op′)
}∣∣

cK(op) =
∣∣{π(op′) : op′ ∈ O ∧ op′ overlaps op

}∣∣
cI(op) =

∣∣{op′ ∈ O : op′ overlaps op}
∣∣

cOI(op) = max
op′∈O

op′ overlaps op

cI(op
′)

It should be clear from this definition that for any operation op, both cP (op) ≤ P and cK(op) ≤
P . In fact, there is a chain of inequalities involving the four definitions of contention given

above.

Proposition 1. For any operation op ∈ O, 1 ≤ cP (op) ≤ cK(op) ≤ cI(op) ≤ cOI(op) and this bound
is tight.

Proof. Fix some operation op ∈ O. Let S = {op′ ∈ O : op′ overlaps op}, and for any x ∈ I(op),

1This is not restrictive: in any finite execution in which two intervals are identical, they may be perturbed
slightly such that they are not, without affecting contention.

CHAPTER 3. MEASURES OF CONTENTION 14

C

A

G

D E

B

H

F

Figure 3.2: The interval graph of the set of intervals shown in Figure 3.1

let Sx = {op′ ∈ O : x ∈ I(op′)}. The definitions of contention for the operation op now become:

cP (op) = max
x∈I(op)

|Sx| cI(op) = |S|

cK(op) = |π(S)| cOI(op) = max
op′∈S

cI(op
′)

By these characterisations we find cOI(op) ≥ cI(op) because op ∈ S, and cI(op) ≥ cK(op)

because a set is at least as large as its image under a map. Note that since the execution is well-

formed, |Sx| = |π(Sx)|, and since we have Sx ⊆ S for all x ∈ I , it follows that cP (op) ≤ cK(op).

Finally, all of these bounds are tight by considering an execution containing one operation and

one process.

Putting aside the process contention momentarily, it is easy to see that all that is needed to

calculate the interval contention and the overlapping-interval contention is information about

which operations overlap. In fact, as we will soon see, this is true for the point contention as

well. Hence a natural setting to analyse these measures of contention is as an interval graph,

which contains precisely this information, while hiding the complications of specific processes

and points in time.

3.2 The interval graph and simplicial vertices

Any graphs G = (V,E) considered here are finite, undirected, and without multiple edges or

loops. V denotes the vertex set and E denotes the edge set. n always refers to the number of

vertices |V | and m always refers to the number of edges |E|. For any vertex subset U ⊆ V ,

G[U] = (U,E ∩ (U × U)) is called the subgraph induced by U . A vertex subset U ⊆ V forms a

clique if the subgraph G[U] is complete. For any vertex v, its neighbourhood N(v) consists of all

vertices incident to v. A vertex v is called simplicial if the subgraph induced by its neighbours

and itself G[{v} ∪N(v)] is complete.

Definition 2. The interval graph of a finite set of real intervals S is the graph with vertex set S, and
an edge between two intervals I, J ∈ S if I 6= J and I ∩ J 6= ∅.

CHAPTER 3. MEASURES OF CONTENTION 15

For an execution α = (O, P, I, π), define the interval graph of that execution to be the interval

graph of the set {I(op) : op ∈ O}. It is convenient for the discussion to have the vertex set of

this graph being the set of operations O, which is unambiguous since I is injective.

From the perspective of an interval graph, the interval contention of an operation becomes re-

markably simple: cI(op) = 1+deg op, since the degree counts every op′ ∈ O\{op} overlapping

with op, and 1 is added to count op overlapping itself. The point contention cP (op), on the

other hand, is the size of a maximum clique containing the vertex op. This should be clear by

the following lemma:

Lemma 1. Let S be a finite set of compact real intervals. There is a point x ∈ R common to every
interval in S if and only if all of the intervals in S intersect pairwise.

Proof. The only if direction is simple: if x is contained in every interval, then x ∈ I∩J for every

I, J ∈ S, and so every pair of intervals have nonempty intersection. For the other direction,

let the set of intervals S = {[ai, bi] | 1 ≤ i ≤ n}. Let a = maxi ai be the latest starting time

and b = mini bi be the earliest finishing time amongst the intervals. Then a = al and b = br

for some r and l. The intervals [al, bl] and [ar, br] have nonempty intersection and so for any

x ∈ [al, bl] ∩ [ar, br] and 1 ≤ i ≤ n we have ai ≤ a ≤ x ≤ b ≤ bi, so x is common to every

interval.

Figure 3.3: For a set S of pairwise intersecting intervals, any point x between the latest starting
time and the earliest finishing time (shown shaded) belongs to every interval.

Interval graphs belong to a larger class of graphs called chordal graphs, in which any cycle of

length 4 or more always contains a chord, an edge connecting two nonadjacent vertices of the

cycle. Chordal graphs are characterised completely by the existence of a perfect elimination
order, defined below. In the case of interval graphs, the existence of such an order is easy to

see, so I will give a short proof.

Definition 3. A perfect elimination order is an ordering {vi}ni=1 of vertices in a graph such that for all
1 ≤ i ≤ n, vi is simplicial in G[v1, . . . , vi].

Lemma 2. Every interval graph G on n vertices admits a perfect elimination order.

Proof. The case for n = 1 is clear. Proceed by induction: assume the claim holds for interval

graphs with n−1 vertices. Take the vertex v corresponding to the interval with earliest finishing

CHAPTER 3. MEASURES OF CONTENTION 16

time: this vertex is simplicial since the finishing time intersects every interval which overlaps

v. The graph G − v is again an interval graph and so by hypothesis there exists a perfect

elimination ordering {vi}n−1i=1 of G− v. Setting vn = v gives a perfect elimination order {vi}ni=1

of G.

A perfect elimination order can be viewed as a process of reducing the graph to nothing by

deleting one vertex at a time, in such a way that every vertex is simplicial just prior to its

deletion. The clique a vertex forms with its neighbourhood at the time of its deletion will be

a clique in the original graph, and so by using this process we are able to construct a lower

bound on the overall point contention in an execution.

Lemma 3. Let G be a graph with a perfect elimination order {vi}ni=1, and let M(v) be the size of a
maximum clique containing the vertex v. Then

∑
v∈V M(v) ≥ n+m.

Proof. Take a perfect elimination order {vi}ni=1 of the vertices ofG, and defineGi = G[v1, . . . , vi].

This gives a family of graphs Gn, . . . , G1, such that Gn = G, G1 is a single vertex, and Gj =

Gj+1 − vj+1 for all 1 ≤ j < n. Let di be the degree of vi in Gi. Since vi is simplicial in

Gi, {vi} ∪ N(vi) forms a clique in Gi and hence also in G, so 1 + di ≤ M(vi). Finally, note

that di is the number of edges removed when removing vi from Gi, so
∑n

i=1 di = m. So∑
v∈V M(v) ≥

∑n
i=1(1 + di) = n+m.

3.3 Equivalence of overall point and interval contention

For any finite execution α, let cP (α) =
∑

op∈O cP (op), and likewise for the other measures of

contention.

Theorem 1. In any finite execution α, cP (α) ≤ cI(α) < 2cP (α).

Proof. Form the interval graph G = (V,E) of the execution α, with n vertices and m edges.

By the definitions of contention given before, the interval contention of a single operation op

is cI(op) = 1 + deg op, where deg denotes the degree of the operation’s interval in the graph.

Summing across all operations, cI(α) =
∑

v∈V (1 + deg v) = n + 2m. As discussed previously,

the interval contention cP (op) is the size of the largest clique containing op in the graph, so by

Lemma 3 we have n+m ≤ cP (α).

Putting these together with the inequality in Proposition 1, we find that

n+m ≤ cP (α) ≤ cI(α) ≤ n+ 2m

CHAPTER 3. MEASURES OF CONTENTION 17

and so by taking the ratio of cI(α) to cP (α),

1 ≤ cI(α)

cP (α)
≤ n+ 2m

n+m
= 1 +

m

n+m
< 2

Had we defined the point and interval contention of an operation op to not include op itself, so

that in an uncontended execution cP (op) = cI(op) = 0 instead of 1, a similar result holds. In

that case, the sum of interval contention with respect to the interval graph is cI(α) = 2m, and

the lower bound on the point contention ism ≤ cP (α), so we find that cP (α) ≤ cI(α) ≤ 2cP (α).

Although Theorem 1 alone says that in amortised terms, cP = Θ(cI) and so the point con-

tention and interval contention are equivalent, it is interesting to examine what a “worst-case”

execution is. Intuitively, it has a very restricted point contention, while intervals overlap as

many times as possible. Such a construction is given in the proof of Theorem 2 and illustrated

in Figure 3.4, and shows that the bound given above is tight.

Theorem 2. For any 0 < ε < 1
2 , there exists a family of executions {αn}n≥1 where each αn has n

operations and εn processes, such that

lim
n→∞

cI(αn)

cP (αn)
= 2− ε

Proof. Let αn be an execution containing n operations labelled opi for 0 ≤ i < n, and let

1 ≤ k ≤ n/2. Define the mappings π(opi) = i (mod k) and I(opi) = [i, i + k − 1
2] for all

0 ≤ i < n. It is easy to check that at the start or end point of each operation there are k

operations active at that point in time and so cP (op) ≥ k for all operations. Since there are only

k processes, cP (op) = k for all operations, so cP (αn) = nk.

By the length and placement of operations, for every operation op the set of operations in-

tersecting its left endpoint is disjoint to the set of operations intersecting its right endpoint,

and the union of these is every operation concurrent with op. Hence every operation but the

first k − 1 and the last k − 1 operations have interval contention 2k − 1. The first opera-

tion has interval contention k, the next k + 1, and so on until the kth operation has interval

contention 2k − 1, and by symmetry the same goes for the last k operations. By overcount-

ing the interval contention overall and subtracting off the start and end deficits, we find that

cI(αn) = n(2k − 1) − 2(0 + 1 + . . . + (k − 1)) = 2nk − n − k(k − 1). The ratio of interval

to point contention then becomes cI(αn)/cP (αn) = 2 − 1
k −

k−1
n . By letting k = εn, we get

cI(αn)/cP (αn) = 2− ε− 1−ε
εn .

CHAPTER 3. MEASURES OF CONTENTION 18

Figure 3.4: An example worst-case construction with n = 9 and k = 3.

3.4 Bounds for overall process and overlapping-interval contention

Theorem 1 together with Proposition 1 gives the chain of inequalities cP (α) ≤ cK(α) ≤ cI(α) <

2cP (α), and so the point, process, and interval contention are interchangeable additive terms

when doing amortised analysis.

The overall overlapping-interval contention, on the other hand, cannot be bounded within a

constant factor of the point contention. Consider an execution of two processes, where the

first process performs one long-running operation and the second process runs n − 1 short

operations, all of which execute inside the interval of the long-running operation. Figure 3.5

shows an example of such an execution. The point contention of every operation is 2, and since

every operation overlaps with the long-running operation op which has interval contention n,

the overlapping-interval contention of every operation is n. So in this execution cP (α) = 2n

and cOI(α) = n2.

Figure 3.5: An execution on 2 processes and n operations, with cP = 2 and cOI = n for every
operation.

3.5 Conclusion

In this chapter, we have seen that three definitions of contention which are in use in the liter-

ature today, the point contention, process contention, and interval contention, are equivalent

in an amortised context. This result has practical impact, as time bounds in terms of the point

contention are usually much harder to work with than interval contention.

This result allowed me to simplify Fomitchev and Ruppert’s proof of amortised step complex-

ity in their linked list, and also led me to come up with a modification which has the same step

complexity as the original list but performs much better in practice. The proof and modifica-

tion are shown in the next chapter.

Chapter 4

Linked Lists

In the previous chapter, I examined different definitions of contention from a purely theoret-

ical perspective. In order to determine what impact contention has in practice, I selected five

different concurrent linked list algorithms from the current literature to implement and test ex-

perimentally. In this chapter, I present these algorithms, accompanied by bounds on their step

complexity where possible. I also provide a simpler proof of the step complexity of Fomitchev

and Ruppert’s linked list, and a modification of their list with the same step complexity but

better performance in practice.

All of the linked lists described in this chapter implement a set abstraction which stores integer

keys. Every list has a dummy head node storing the key −∞, and a dummy tail node storing

the key +∞. All of these lists can easily be extended to a dictionary abstraction, storing keys

coming from any totally ordered set.

4.1 Harris’ List

The Harris linked list [Har01] is a well-known lock-free linked list, regarded as one of the most

efficient concurrent linked lists. The list structure resembles a regular linked list, with each

node having a key field and a next pointer. However, in the Harris list the next pointer also

stores a marked bit to indicate logical deletion. On most modern architectures (such as x86,

x86 64, ARM), pointers suitable for CAS are always aligned on 4-byte or 8-byte boundaries,

so this marked bit can be stored in one of the unused low-order bits of the pointer. This does,

however, require the marked bit to be masked off every pointer before it is dereferenced, which

has a non-negligible performance impact.

Every operation uses a common traversal subroutine, which will traverse the list to find the

node with the desired key, or otherwise the insertion point if the key does not exist. The

traversal operation is “not allowed” to ignore logically deleted nodes: it must attempt to re-

19

CHAPTER 4. LINKED LISTS 20

move them from the list. If a traversal encounters a chain of one or more consecutive marked

nodes, it will attempt to remove the chain from the list by performing a CAS on the node imme-

diately preceding the chain. If this CAS was successful, the traversal may proceed, otherwise

the traversal must restart from the beginning of the list.

The insertion of a key k is relatively simple: a traversal is performed to attempt to find two

nodes pred and succ such that pred.key < k ≤ succ.key. If succ.key = k, the insertion returns

false. Otherwise, a new node node is allocated, with node.key = k, node.next = succ, and then

a CAS is performed on pred.next to attempt to change it to point to node. If the CAS succeeded,

the insertion returns true, otherwise the insertion restarts from the front of the list.

Deletion, however, can run into problems if done naively. Suppose the following approach is

taken to deletion: locate the node node to be deleted, along with its predecessor pred and its

successor succ. Then, perform a CAS on pred.next to attempt to change it from node to succ. If

two operations attempt to delete two consecutive nodes simultaneously, then the deletion will

only take effect for one of them, as illustrated in Figure 4.1.

Figure 4.1: A naive deletion scheme leads to lost deletions.

Harris’ approach to fixing this problem is to break deletion into two CAS steps. The node to be

deleted node is located, along with its predecessor pred and successor succ. Firstly, node.next

is marked by setting the pointer’s low bit. This is done using CAS, and if it fails, the delete oper-

ation restarts from the front of the list. After the marked bit has been successfully set, node.key

is considered logically removed from the set, and node.next is never allowed to change. The

delete operation will then optimistically attempt to remove node using CAS on pred, and if this

fails, will run a traversal operation from the start of the list to the node’s successor, guarantee-

ing that the marked node has been physically removed from the list.

Figure 4.2: The two-step deletion of Harris’ linked list: first a node is marked by using CAS on
its next pointer, then the node is physically removed by using CAS on its predecessor’s next
pointer.

CHAPTER 4. LINKED LISTS 21

Since operations restart from the beginning of the list on failed CAS operations, the Harris list

cannot have a good asymptotic complexity. It was pointed out by Fomitchev & Ruppert [FR04]

that there are executions involving m operations on a list of length n where the Harris list

performs Ω(nm) work per operation. The example they present is as follows: consider an

initial list of length n, and m processes labelled P1 through to Pm. The process Pm repeatedly

deletes the last element in the list, while processes P1, . . . , Pm−1 all attempt to insert nodes at

the end of the list. Every time P1, . . . , Pm−1 are all ready to perform a CAS at the end of the

list, Pm performs a CAS to mark the last node, causing all m − 1 processes to restart from the

front of the list.

In that execution, the point contention of each operation is m, so it is clear there are executions

requiring Ω(ncP) work per node. Despite this, the Harris list performs well in practice in cases

when the elements being accessed are spread throughout the list.

4.2 Fomitchev & Ruppert’s List

Fomitchev and Ruppert [FR04] proposed a linked list based on Harris’, but with improved

worst-case performance. They add to the next field of each node a flag bit, in addition to

the marked bit. They also add a backlink field to each node which is set during deletion

and points to the node’s predecessor, to assist operations that “get stuck” on a logically or

physically deleted node.

The main difference from the Harris list is in how nodes are deleted. Once a node node is

located, along with its predecessor pred and successor succ, the predecessor is flagged by setting

the flag bit of pred.next. Once pred is flagged, its next field is never allowed to change until

node has been physically removed from the list and pred has been unflagged. Next, node is

marked by setting the mark bit of node.next. Once node has been marked, its next field is

never allowed to change. Finally, pred.next is changed to point to succ using a CAS, removing

the flag bit at the same time.

Thus the deletion is broken into three steps: flagging, marking, and removal. Just prior to mark-

ing, node.backlink is set to point to pred. This ensures that any operations that “get stuck”

on node following its marking or removal can backtrack to pred and continue from there,

rather than restarting from the front of the list like in the Harris algorithm, and is what gives

Fomitchev & Ruppert’s list a much better asymptotic complexity. Setting the backlink can be

done with an atomic store, since the predecessor’s next field is not allowed to change until the

node is physically removed from the list.

Aside from deletion, operations in Fomitchev and Ruppert’s list are very similar to Harris’

list, although they may have to perform helping on flagged nodes, as well as marked nodes.

The largest improvement is that due to backlinks, retrying is very cheap, and the number

CHAPTER 4. LINKED LISTS 22

Figure 4.3: The three-step deletion of Fomitchev’s linked list. The predecessor is flagged us-
ing CAS. The node’s backlink is set, then the node is marked using CAS. Finally, the node is
removed using CAS, unflagging the predecessor at the same time.

of backlinks which need to be traversed by an operation can be shown to be amortised O(cP),

where cP is the point contention of an operation. By using a scheme where operations “charge”

each other for extra work, Fomitchev and Ruppert showed that their list has an amortised step

complexity of O(n+ cP) for all operations.

A simplified proof of time complexity

Fomitchev and Ruppert’s original proof of the amortised step complexity of an operation in

their list was quite involved. Because they were aiming to achieve an additive factor of the

point contention, a complex charging scheme was needed to make sure that the net amount

charged to any CAS belonging to an operation op was O(cP (op)). Here I present a simpler

proof that the amortised step complexity of an operation op is O(n(op) + cI(op)), where n(op)

is the number of logically present elements in the set at the invocation time of op.

Firstly, note that it is only important to count the number of forward pointer traversals, back-

link traversals, and CAS attempts: the total work done by the algorithm is at most a constant

factor away from this. If an operation op executes in isolation, it will take O(n(op)) steps to

complete. Call all of the steps an operation would have taken in isolation necessary, and any

other steps it needs to take due to interference from other operations extra. Any extra work that

an operation has to do will be “charged” to another operation. By showing that any operation

op may be charged at most O(cI(op)) times, the bound follows.

An insert operation opi may cause another operation op to have a failed CAS attempt, but will

not cause it to backtrack or help as a result. So opi may be charged at most cI(opi) times due

to any failed CAS attempts it has caused. The insert operation opi may also cause another

operation op to traverse a new node that was not present at op’s invocation time. Since opera-

tions will only traverse pointers once, opi may be charged at most cI(opi) for this. So an insert

operation opi may be charged a total of 2cI(opi).

CHAPTER 4. LINKED LISTS 23

A remove operation opr begins by successfully flagging a node. Once the flag has been suc-

cessfully set, other operations may help set a backlink, mark the node to be removed, and

physically remove it from the list: all of these operations (along with failed attempts trying to

accomplish them) are charged to opr. Furthermore, any backlink traversals an operation per-

forms from the node that opr is removing are charged to opr. Since the same backlink is never

traversed twice by the same operation, and from the time that a node is flagged it only takes a

constant number of steps to remove its successor from the list, a remove operation opr may be

charged at most O(cI(opr)) times.

This accounts for all extra steps in an operation. So any update operation op may be charged

an extra cost of O(cI(op)), in addition to its necessary cost of O(n(op)), so the amortised cost

of an operation in Fomitchev and Ruppert’s list is O(n+ cI). Due to Theorem 1, this bound is

equivalent to Fomitchev and Ruppert’s original bound of O(n+ cP).

4.3 A modification of Fomitchev & Ruppert’s list

Note that in the simplified proof, a contains operation never needed to be charged. This is

partly due to the fact that the interval contention is a coarser, easier to deal with quantity than

the point contention. However, one realisation we can draw from this is that if we “turn off”

the helping that the contains operation would usually do (cleaning up marked nodes), it will

have no effect on the amortised step complexity of a list operation, and remain lock-free.

I modified Fomitchev and Ruppert’s list to have a contains operation which is wait-free: it per-

forms no helping and makes a single pass through the list. The pseudocode for the operation

is shown in Figure 4.4.

1: procedure CONTAINS(k)
2: current← head
3: marked← false
4: while current.key < k do
5: succ← current.succ
6: marked← succ.mark
7: current← succ.right
8: end while
9: return (current.key = k) ∧ (marked = false)

10: end procedure

Figure 4.4: The wait-free Contains operation

The new contains operation to search for key k traverses the list while performing no helping,

until it reaches some node node such that node.key ≥ k. If node.key = k and node is not

marked, the contains operation return true. Otherwise, it returns false.

CHAPTER 4. LINKED LISTS 24

What remains is to show this operation is linearisable, by identifying linearisation points

within each operation’s interval of execution. A successful contains operation linearises at

the point when the successor field of the matching node is read. Finding a linearisation point

for an unsuccessful contains operation on the other hand, is less straightforward. Because the

new contains operation ignores node markings while traversing the list, it is possible for the

contains operation to be traversing a chain of physically removed nodes, and be oblivious to

the effects of concurrent insertions.

5 10 11

106

Figure 4.5: If a Contains(7) operation is currently observing the recently removed nodes 6 and
10, it will be oblivious to the effects of a concurrent Insert(7). This example shows that it is
incorrect to linearise a unsuccessful contains operation at the time it last read a node.

To resolve this, I use the same scheme as in the lazy list. An unsuccessful Contains(k) operation

is linearised at whichever of these points comes first:

• The point where a node node satisfying node.key ≥ k is found.

• The point immediately before a new node with key k is added to the list.

4.4 The Lazy List

The lazy list [Hel+06] is a linked list which uses locking in a novel way to achieve good perfor-

mance. Each node in the list is protected by a lock, and any modifications to that node’s data

may only be done while holding the lock. Each node, in addition to key and next fields, also

stores a marked field which indicates logical deletion. (Note that this marked field is a regular

boolean field, not hidden in the low bits of a pointer).

The update methods (add and remove) of the lazy list will proceed through the list without

acquiring locks to locate two consecutive nodes pred and curr such that pred.key < key ≤
curr.key, where key is the key being inserted or removed. When found, the update operation

will lock both pred and curr. Once the locks have been acquired, the operation then validates
that the information it read prior to locking has not changed: it turns out all that needs to be

checked is that pred and curr are unmarked and adjacent. If the validation fails, the update

restarts from the front of the list. If the validation succeeded, the update will proceed and do

any necessary work to the structure before releasing both locks.

The contains method of the lazy list is wait-free: it acquires no locks, and only makes a single

CHAPTER 4. LINKED LISTS 25

pass through the list. The logical deletion markings are essential to having a wait-free contains

operation, as well as a linearisation argument similar to the one given in the last section.

Because the update operations in this list restart from the front when they fail to validate, I

expect this list to perform similarly to the Harris list when many updates are taking place in

the same location.

4.5 The Versioned List

The versioned list [Gra+15] is a lock-based list similar to the lazy list but using the novel idea

of versioned locks, locks which count the number of times they have been acquired. The version

number on the lock acts as a kind of “modification timestamp” for the data it protects: if the

version number is read and then the protected data examined, the operation can at some later

time attempt to acquire the lock at that specific version number. If the locking succeeded, the

operation is guaranteed that the data in that node has not changed in the meantime.

A versioned lock l exposes an interface with the following semantics:

• GetVersion(l) returns the current version number of the lock.

• TryLockAtVersion(l, v) acquires the lock if and only if the lock is unlocked with version

number equal to v, otherwise it returns false.

• Unlock(l) atomically releases the lock and increments its version number.

• LockAtCurrentVersion(l) will spin to acquire the lock at the earliest available opportu-

nity.

These methods can be easily be implemented by treating the lock as an atomic integer l, with

even numbers meaning unlocked states and odd numbers being locked states. The version

number is the value of l with the least significant bit set to 0 (version numbers are always

even). To attempt to acquire the lock at version v, perform CAS(l, v, v + 1). Unlocking can be

done by incrementing l, and LockAtCurrentVersion(l) can be implemented using GetVersion(l)

and TryLockAtVersion(l, v).

The versioned locks, therefore, allow pre-locking validation, as opposed to the post-locking valida-
tion used in the lazy list. The version number can be recorded and then a validation in the style

of the lazy list can be performed, and the operation partially aborted if that validation fails. If

the validation passes, the operation attempts to acquire the relevant lock at the recorded ver-

sion number. If the lock was acquired, the operation is guaranteed that no data has changed

since validation, so it can perform its work quickly before releasing the lock. Otherwise, the

CHAPTER 4. LINKED LISTS 26

operation partially aborts and attempts to re-validate. If this validation fails, the operation

must perform a full abort and restart from the front of the list.

The first advantage of this is that an operation will acquire a lock only if there is a guarantee

that the operation needs that lock and can do useful work while holding it. The second advan-

tage is that it keeps critical sections as small as possible: all preparation can be done without

holding locks. Since all synchronisation is done through the locks, read-only operations on the

versioned and lazy linked lists are very fast: they are wait-free, and unlike the Harris list or

Fomitchev and Ruppert’s list, they have unmarked pointers and do not waste time masking

bits off pointers.

4.6 The Universal Construction

For completeness (as well as my own interest) I also implemented a linked list based on the uni-

versal construction technique presented in [Her93]. Because all updates are serialised through

a single pointer, and because all update operations must make a full copy of the list, this should

have very poor performance compared to the other highly concurrent linked lists, and this was

observed in practice. However, it did have some very interesting behaviour under highly con-

tended workloads, which is discussed in Chapter 5.

The pseudocode operations for this list are simple enough to state here. There is one shared

pointer head, which points to the head of a regular, sequential linked list (with the head node

storing −∞ and the tail node storing +∞). The update operations follow this basic format:

1. Read the shared pointer head, and store its value locally.

2. From this local value, make a full copy of the linked list.

3. Apply the update privately to the local copy. If that update was ineffective, return false.

4. Attempt to use CAS to swing the head pointer to the local copy. If the CAS was successful,

return true. Otherwise, restart the whole operation.

A successful update linearises when its CAS is successful, while an unsuccessful update lin-

earises when it most recently read the shared head pointer. A contains operation linearises at

the point when it reads the shared pointer head. The contains operation is wait-free: it simply

reads the shared pointer head, then checks for the existence of the given key in the list. Pseu-

docode for the contains and add operations are given in Figure 4.6. The remove operation is

analogous to the add operation.

The “universal list” is easily seen as both correct and inefficient. If multiple unrelated (in the

sense they operate on different keys) updates attempt to modify the list, they will always con-

CHAPTER 4. LINKED LISTS 27

1: procedure FIND(h, k)
2: prev, curr ← h, h.next
3: while cur.key < k do
4: prev, curr ← curr, curr.next
5: end while
6: return (prev, curr)
7: end procedure

8: procedure CONTAINS(k)
9: h← head

10: prev, curr ← FIND(h, k)
11: return curr.key = k
12: end procedure

13: procedure ADD(k)
14: loop
15: h← head
16: copy ← COPY(h)
17: prev, curr ← FIND(h, k)
18: if curr.key = k then
19: return 0
20: end if
21: prev.next← NEWNODE(k, curr)
22: if CAS(head, h, copy) = 1 then
23: return 1
24: end if
25: end loop
26: end procedure

Figure 4.6: The universal linked list operations. The procedure Copy(h) makes a new copy
of the linked list starting at the node h. The procedure NewNode(key, next) returns a newly
allocated node with the specified key and next fields.

flict at the root pointer, forcing all but one to restart. So it has a very poor degree of concurrency,

but is still an interesting example to study, based on its behaviour under high contention, as

explored in the next chapter.

Chapter 5

Experimental Evaluation

In this chapter, I evaluate the linked lists detailed in Chapter 4 experimentally. I start by com-

paring all of the lists under a uniform workload to show the difference between locking and

lock-free structures in practice. I proceed to then test the lists under highly contended work-

loads to bring out their worst-case behaviours. I also compare Fomitchev and Ruppert’s origi-

nal list to my modification, showing the modification performs better in practice.

5.1 Experimental settings

Synchrobench

All of the linked lists in Chapter 4 were implemented in C and built into Synchrobench. Syn-

chrobench [Gra15] is a micro-benchmarking suite for non-blocking data structures and soft-

ware transactional memory, which allows a user to create their own benchmarks by setting

different parameters, such as the structure size, proportion of updates, and so on. It also

has detailed output about the number and type of operations performed by each thread, and

whether they were effective or not. (Here, an update that inserts a value that is already in the

set, or removes a value not present in the set, is ineffective).

The synchrobench options used during my testing are detailed below:

• Range r ∈ N. Any randomly generated elements are drawn uniformly at random from

the range [1, r].

• Initial size i ∈ [1, r). Before the benchmark starts running, the data structure is initialised

to a size of i, by repeatedly inserting random elements from the update range.

• Duration: how long the each individual benchmark is run for.

28

CHAPTER 5. EXPERIMENTAL EVALUATION 29

• Update ratio u ∈ [0, 1]. Throughout the benchmark, a proportion u of operations will

be updates (such as add or remove), and 1 − u will be read-only operations (such as

contains).

• Threads t ∈ N. The benchmark is run using t independent threads of execution. The

threads share no data (aside from the common data structure) throughout the bench-

mark.

• Effective updates f ∈ {0, 1}. Turning on effective updates means that threads will reat-

tempt updates if they were not effective, to try to get the proportion of effective updates

to total operations equal to u.

Throughout a benchmark, Synchrobench will try to keep the size of the data structure as close

to the initial size i as possible. Each thread remembers whether its last effective update was an

insert or a remove, and will always attempt the opposite operation next. So, over the course

of a benchmark, the actual data structure size can vary from the initial size i by at most ±t, in

practice it does not vary much at all.

I found that, in practice, setting the effective updates parameter f led to difficult-to-understand

results. For example, the update ratio u could be set to 0.5, but more than 90% of operations

performed were updates, due to most updates being ineffective in the uncontended case. For

this reason, I have disabled updates (f = 0) in all of my experiments, and I note the observed

proportion of observed updates for each experiment.

I also extended Synchrobench with my own options, a bias range and a bias offset. These options

were used to test the behaviour of the linked lists in scenarios with high contention, where all

threads attempt to insert or remove the same two values.

• Bias offset B ∈ [1, r].

• Bias range b ∈ N.

Switching on both of these flags causes Synchrobench to generate random numbers in the

range [B,B + b] instead of [1, r] during the benchmark. When these bias flags are enabled,

updates are chosen to be inserts or remove with equal probability, rather than based on the last

effective update a thread performed.

Hardware and libraries

I used two machines for my experiments. The first was a 2 Socket Intel Xeon E5-2450 2.1GHz

8 cores (16 cores in total) with 2 hyperthreads per core (32 hyperthreads in total) machine

running Ubuntu 12.04.5 LTS.. The second was a 4 socket AMD Opteron 6378 2.4 GHz 16 cores

CHAPTER 5. EXPERIMENTAL EVALUATION 30

(64 cores in total) machine running Fedora Linux 18. GCC 4.9.2 was used to compile the C

code: the same binaries were run on both machines. The optimisation options passed to GCC

were -O3 -m64.

All of the tests shown were run using the jemalloc1 allocator. The standard allocator in Glibc

uses locking internally, and thus becomes a bottleneck in these sort of experiments due to

threads serialising by repeatedly calling malloc. Newer allocators such as jemalloc and tc-

malloc allocate large chunks of memory per-thread every so often, after which many allocation

calls on that thread are served from a thread-local cache, and can proceed without locking. The

tests were run using jemalloc 3.6.0 compiled to a shared library, and loaded into each test run

by using the LD_PRELOAD Linux environment variable.

The code for each of the linked lists I have implemented use the new C11 atomics library de-

fined in stdatomic.h, and so will only compile with recent versions of GCC and Clang. The

new atomics library allows for writing code which is portable between machines with differ-

ent memory consistency guarantees, by explicitly specifying memory ordering guarantees per

atomic operation.

5.2 A standard workload

To investigate the difference in performance between lock-based and lock-free data structures,

I used both machines to test all of the linked lists I implemented under a fairly standard work-

load. The workload has an initial size i and an update ratio u listed above each graph. The

other parameters used were the range r = 2i, and effective updates disabled (f = 0). Because

the choice of the range, the proportion of effective updates can be expected to be u/2, and this

was observed in practice. Each datapoint shown is the average of 20 runs of 5 seconds each,

and the error bars shown are ± the sample standard deviation. The data for the 32 hyper-

threaded Intel machine is shown in Figure 5.1, and the data for the 64 core AMD machine is

shown in Figure 5.2.

Firstly, the universal linked list has poor performance in every setting considered in this stan-

dard workload. This is to be expected as it serialises all updates, whether or not those updates

are operating on disjoint locations within the list. The throughput of the list increases slightly

going from 1 to 4 threads, but then remains relatively constant all the way up to 80 threads

on both the Intel and AMD machines. So while it has poor performance to begin with, its

performance does not deteriorate when more threads are added.

The Harris list is the most efficient non-blocking list in the small 128-element cases on both

machines. On the Intel machine, it scales almost linearly with the number of threads up to the

1http://www.canonware.com/jemalloc/

http://www.canonware.com/jemalloc/

CHAPTER 5. EXPERIMENTAL EVALUATION 31

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80

Th
ro

ug
hp

ut
(1

06
op

s/
se

c)

128 elements at 20% update rate

Th
ro

ug
hp

ut
(1

06
op

s/
se

c)

128 elements at 90% update rate

Th
ro

ug
hp

ut
(1

06
op

s/
se

c)

Threads

1024 elements at 90% update rate

Harris
Fomitchev

FR Modification
Lazy

Versioned
Universal

Figure 5.1: A benchmark showing a uniform workload at lists of different sizes, run on the
32 hyperthread Intel machine. The lock-based lists performance decreases as the number of
threads exceeds the number of hyperthreads. The lock-free data structures suffer no perfor-
mance penalty, and their throughput remains constant as the number of threads increases.

CHAPTER 5. EXPERIMENTAL EVALUATION 32

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t(

1
06

op
s/

se
c)

128 elements at 20% update rate

Th
ro

ug
hp

ut
(1

06
op

s/
se

c)

128 elements at 90% update rate

T
hr

ou
gh

pu
t(

10
6

op
s/

se
c)

Threads

1024 elements at 90% update rate

Harris
Fomitchev

FR Modification
Lazy

Versioned
Universal

Figure 5.2: The same benchmark as shown in Figure 5.1, run on the 64 core AMD machine.
Again, the performance of the lock-based lists decreases as the number of threads exceeds the
64 physical cores.

CHAPTER 5. EXPERIMENTAL EVALUATION 33

limit of 32 hyperthreads, from which point its performance remains constant. However, the

1024 element 90% update case on the Intel machine shows poor performance of the Harris list

for small numbers of threads.

Fomitchev and Ruppert’s list shows similar behaviour to the Harris linked list in most cases.

It also has the property that when the number of threads exceeds the number of hardware

threads or cores, its performance stays constant rather than deteriorating. We can see that the

performance of the modification to Fomitchev and Ruppert’s list is a strict improvement on the

original algorithm when the update ratio is low, and the two are practically indistinguishable

when the update ratio is high. Fomitchev and Ruppert’s list is unaffected by the performance

problems of Harris’ list in the 1024 element 90% update ratio case on the Intel machine, and

on the AMD machine it outperforms the Harris list in this case. This is consistent with the fact

that the operations in Harris’ list pay an O(n) penalty for retrying, wheras in Fomitchev and

Ruppert’s list the penalty for retrying is constant (traversing a backlink), so the Harris list is

impacted more by the large cases than Fomitchev and Ruppert’s list.

Despite the worst-case complexity of O(n + c) for Fomitchev and Ruppert’s list, Harris’ list

usually performs better. There are a few reasons for this. Firstly, CAS steps are expensive as

they require processor threads to lock cache lines before operating on data, which can be tens

or hundreds of times slower than a regular read or write to shared memory. An insertion in

either list only takes one (successful) CAS, but a deletion in the Harris list takes two successful

CAS steps, while a deletion in Fomitchev and Ruppert’s list takes three successful CAS steps.

The large time impact of a CAS operation, along with the fact that more CAS operations means

a larger window in which a thread could be pre-empted and have its next CAS fail, means that

the Harris list will perform better in small cases than Fomitchev and Ruppert’s list. Secondly,

the size of a node in the Harris list is 16 bytes (on the 64-bit architechtures considered here),

wheras the size of a node in Fomitchev and Ruppert’s list is 24 bytes. Smaller nodes mean that

more of the list can fit into a processor’s local cache, and can also have effects on the allocation

strategy chosen by the allocation library. However, we can see that a lot of the performance

gap between the Harris list and Fomitchev and Ruppert’s list can be closed by the modification

with the wait-free contains operation, especially in cases with a low update ratio.

Moving on to the lazy list, we immediately see the dramatic performance difference of a lock-

based list compared to a lock-free list. Once the number of threads exceeds the number of

hardware threads, the performance of the lazy list falls off sharply, on both the Intel and AMD

machines. When the number of threads does not exceed the number of hardware threads, the

lazy list scales well, but in general is slower than the other lists.

Finally, the versioned linked list appears to have very good performance, outperforming every

other list on the Intel machine, provided the number of threads used is less than the number of

hyperthreads. When the number of threads exceeds the number of hardware threads or cores,

CHAPTER 5. EXPERIMENTAL EVALUATION 34

its performance deteriorates rapidly, similarly to the lazy list.

There are two more features of the graphs which are interesting. The first one is that on the

Intel machine the jump from 1 to 4 threads causes a significant performance drop, after which

performance starts increasing again. The performance drop is more pronounced in the cases

with a higher update ratio. I conjecture that these effects are due to Linux’s default policy of

running threads on separate NUMA (non-uniform memory architecture) nodes, which means

that threads will be placed on different sockets and have to lock cache lines across the inter-

connect between processors. However, the same effect is not observed on the AMD machine,

which again could be to do with the different caches and interconnects used in its architecture.

The second feature is that raising the number of threads past the 16 physical cores doesn’t al-

ways give a performance boost. As seen in the graphs, the lazy list seems to not be able to take

advantage of the hyperthreads as much as the other data structures.

5.3 The effects of contention

In order to measure the cost due to contention in the linked lists, I created an artificial workload

using the bias parameters I added to Synchrobench. A list of some initial size i was created,

then when performing updates, every thread had to insert or remove the key with value bi/2c
or bi/2c + 1. This was done by setting the bias offset B = bi/2c and the bias range b = 2.

Effective updates were not forced (f = 0), though in this case the effective update ratio varied

between lists. I ran this experiment on both the AMD and the Intel machines, however here I

only give results for the AMD machine, shown in Figure 5.3. The Intel machine gave chaotic

and unpredictable results, and I could not track down why this was the case.

The behaviours of each list vary, so again I will go over each list in turn.

Firstly, the performance of the lazy list is very poor throughout these experiments, mostly

due to the very contended locks on the middle three elements of the list. The performance of

the lazy list drops off sharply as the number of threads jumps from 1 to 4, and continues to

deteriorate as more threads are added. The combination of mutual exclusion locks, and the

behaviour of retrying from the front of the list upon a failed validation, conspire to give the

lazy list a very low throughput in this highly contended workload.

The performance of the universal list increases as more threads are added, which is a surpris-

ing result. In some of the benchmarks, it performs better than both the lazy list and the Harris

list. The explanation of this good performance is the tendency of the universal list to “batch”

together updates with the same key. Suppose there are 10 Insert(100) and 10 Remove(100) op-

erations invoked simultaneously. Assuming operations proceed at relatively the same speed,

each update will spend a while making a copy of the list, and then attempt to locally modify it.

At this point, half the operations will instantly return false because they could do no work (if

CHAPTER 5. EXPERIMENTAL EVALUATION 35

02468

1
0

1
2

0
10

2
0

30
4
0

5
0

60
70

80

0123456

0
10

2
0

3
0

40
50

60
70

80

0123456789

0
10

20
30

40
50

60
70

80

0

0.
51

1.
52

2.
53

3.
54

0
10

20
30

40
50

60
70

80

Throughput(106ops/sec)

Th
re

ad
s

12
8

el
em

en
ts

,2
0%

up
da

te
ra

te

Throughput(106ops/sec)

Th
re

ad
s

12
8

el
em

en
ts

,9
0%

up
da

te
ra

te

Th
re

ad
s

51
2

el
em

en
ts

,2
0%

up
da

te
ra

te

Th
re

ad
s

51
2

el
em

en
ts

,9
0%

up
da

te
ra

te

H
ar

ri
s

Fo
m

it
ch

ev
FR

M
od

ifi
ca

ti
on

La
zy

Ve
rs

io
ne

d
U

ni
ve

rs
al

Fi
gu

re
5.

3:
Th

es
e

gr
ap

hs
sh

ow
th

e
th

ro
ug

hp
ut

of
hi

gh
ly

co
nt

en
de

d
w

or
kl

oa
ds

on
th

e
64

co
re

A
M

D
m

ac
hi

ne
,w

he
re

ev
er

y
up

da
te

op
er

at
io

n
ta

rg
et

s
on

e
of

th
e

m
id

dl
e

tw
o

el
em

en
ts

of
th

e
lis

t.

CHAPTER 5. EXPERIMENTAL EVALUATION 36

0

0.
51

1.
52

2.
53

3.
5

0
1
0

20
3
0

40
5
0

60
70

80

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

0
10

2
0

30
4
0

5
0

60
70

80

0

0.
51

1.
52

2.
5

0
10

20
30

40
50

60
70

80

02468

1012141618

0
10

20
30

40
50

60
70

80

Eff.updates(104ops/sec)

T
hr

ea
ds

12
8

el
em

en
ts

,2
0%

up
da

te
ra

te

Eff.updates(104ops/sec)

Th
re

ad
s

12
8

el
em

en
ts

,9
0%

up
da

te
ra

te

Th
re

ad
s

51
2

el
em

en
ts

,2
0%

up
da

te
ra

te

Th
re

ad
s

51
2

el
em

en
ts

,9
0%

up
da

te
ra

te

H
ar

ri
s

Fo
m

it
ch

ev
FR

M
od

ifi
ca

ti
on

La
zy

Ve
rs

io
ne

d
U

ni
ve

rs
al

Fi
gu

re
5.

4:
Th

e
sa

m
e

be
nc

hm
ar

k
as

sh
ow

n
in

Fi
gu

re
5.

3,
on

ly
sh

ow
in

g
th

e
nu

m
be

r
of

ef
fe

ct
iv

e
up

da
te

s
pe

r
se

co
nd

.
Th

e
sc

al
e

is
in

th
ou

sa
nd

s,
ra

th
er

th
an

m
ill

io
ns

,o
fu

pd
at

es
pe

r
se

co
nd

.

CHAPTER 5. EXPERIMENTAL EVALUATION 37

100 was already in the set, the Insert(100) operations return false, otherwise the Remove(100)

operations return false). One of the remaining updates takes effect by performing a CAS first,

causing the other 9 to restart, all of which will (most likely) be ineffective, despite other con-

current operations. So using only one CAS success and 10 CAS attempts, 20 operations have

been applied.

We can confirm this explanation by restricting the data to look only at the number of effective
updates per second, rather than the number of overall operations per second. Figure 5.4 shows

the same benchmarks as Figure 5.3, but the data shown is the number of effective updates per

second. We can see that the number of effective updates the universal list is able to perform

is much lower than the other lists. This highlights an interesting point: with concurrent data

structures, the scheduling of operations can greatly affect the amount of work that needs to be

done by an algorithm.

The performance of Harris’ linked list drops significantly as more threads are added, evidence

that the list is exhibiting its Ω(nc) worst-case behaviour. Interestingly, the Harris list still seems

to be “optimal” in terms of the number of effective updates it can apply: looking at Figure 5.4

we see that all lists apart from the lazy and versioned lists apply the same number of effective

updates, despite their varying performance overall.

Fomitchev and Ruppert’s list shows a performance decrease coming from the uncontended

workload in Figure 5.2, but retains its good scaling properties. As the number of threads is in-

creased, its performance remains relatively constant, consistent with its worst-case amortised

complexity of O(n+ c) per operation.

The versioned list behaves similarly to the Fomitchev and Ruppert list. I did not expect this,

since if a pre-validation fails (which it does if the targets predecessor has since been deleted)

the operation has to perform a full abort and rescan from the start of the list. It seems that this

behaviour is sufficiently rare for it to not emerge even in this artificially contended case.

5.4 The modification of Fomitchev & Ruppert’s list

My modification of Fomitchev and Ruppert’s list has been included in all of the experiments so

far. The standard workloads shown in Figure 5.1 and Figure 5.2 show the differences between

the two lists nicely. I only changed the contains operation, so as the update ratio u is raised

closer to 1, the performance of the two lists is almost identical. However, in cases where the

update ratio u is lower, the performance of the list is increased substantially.

Figure 5.5 shows the performance of the original list against the modificaiton, on a standard

workload with an update ratio of u = 10% for both the Intel and AMD machines. The modi-

fication is strictly faster than the original in all the workloads tested, with a 25% performance

CHAPTER 5. EXPERIMENTAL EVALUATION 38

increase observed on the 64 core AMD machine at size 128 and update ratio 10%.

5.5 Summary of experimental results

The first experiment used a uniform workload at update ratios of 20% and 90%. We observed

that lock-free linked lists have good scaling properties overall, and are immune to some inher-

ent drawbacks of locks, such as performance decreasing when the number of threads exceeds

the number of physical hyperthreads or cores on the machine. However, there may be locking

data structures, such as the versioned linked list, which perform even faster than a lock-free

data structure.

The second experiment used a highly contended workload where all updates targeted two val-

ues. It showed that the effects of contention are observable in practice, also demonstrated that

algorithms which appear almost identical under a uniform workload may have very different

behaviours under high contention. Lists such as the lazy linked list and the Harris linked list

which perform full restarts suffer large performance penalties.

The third experiment, comparing Fomitchev and Ruppert’s original algorithm to my modi-

fication, shows that the modified algorithm performs much better in practice, while having

the same asymptotic time complexity. This, along with comparisons of these algorithms from

the previous two experiments, shows that modifying a lock-free operation to be wait-free and

perform no helping can have a practical performance benefit, even in situations of high con-

tention.

CHAPTER 5. EXPERIMENTAL EVALUATION 39

468

1
0

1
2

1
4

1
6

1
8

2
0

2
2

0
10

2
0

30
4
0

5
0

60
70

80

2468

1012141618

0
1
0

2
0

3
0

4
0

50
60

70
80

05

1015202530354045

0
10

20
30

40
50

60
70

80

05

1015202530

0
10

20
30

40
50

60
70

80

Throughput(106ops/sec)

Th
re

ad
s

12
8

el
em

en
ts

,A
M

D
64

co
re

Throughput(106ops/sec)

Th
re

ad
s

25
6

el
em

en
ts

,A
M

D
64

co
re

Th
re

ad
s

12
8

el
em

en
ts

,I
nt

el
32

hy
pe

rt
hr

ea
d

Th
re

ad
s

25
6

el
em

en
ts

,I
nt

el
32

hy
pe

rt
hr

ea
d

Fo
m

it
ch

ev
FR

M
od

ifi
ca

ti
on

Fi
gu

re
5.

5:
St

an
da

rd
w

or
kl

oa
ds

at
an

up
da

te
ra

ti
o

of
10

%
,

sh
ow

in
g

th
e

di
ff

er
en

ce
be

tw
ee

n
th

e
or

ig
in

al
al

go
ri

th
m

by
Fo

m
it

ch
ev

an
d

R
up

pe
rt

an
d

m
y

m
od

ifi
ca

ti
on

.T
he

pe
rf

or
m

an
ce

im
pr

ov
em

en
ti

s
as

gr
ea

ta
s

25
%

.

Chapter 6

Conclusion

6.1 Future Work

A more refined notion of contention

It was briefly discussed in Chapter 2 that recently there has been a view that by introducing

more helping into an algorithm, the amortised step complexity can be “tightened” from an

additive term of O(cI) to O(cP). By Theorem 1, we know these two quantities to be amortised

equivalent, so clearly this cannot be distinguished by the point or interval contention. How-

ever, I suspect there could be a more refined measure of contention which does separate these

cases.

Q

P1 P2 P3 P4 P5 Pm

Figure 6.1: Suppose Q causes an inconsistency in the data structure and then gets suspended
for a long time. If every operation performs eager helping, an inconsistency caused by Q will
only be observed once. If no operations perform helping, it will be observed m times.

Consider an execution of one long-running processQ andm short-running processesP1, . . . , Pm.

Suppose we have a structure featuring logical deletions, and the first step in a removal is to

mark a node logically deleted. The long-running process Q marks an element as logically

deleted before being suspended for a long time, while the short-running processes repeatedly

access the data structure. This is illustrated in Figure 6.1. If the short running processes Pi
perform no helping to try to physically remove the node, each will spend extra time traversing

a node not present in the set, and incur a constant cost. The total cost of these extra steps is

Θ(m). On the other hand, if every operation eagerly tries to help finish any partially completed

40

CHAPTER 6. CONCLUSION 41

delete operation it comes across, the first short operation P1 will suffer this (constant) cost, and

the rest will traverse with no extra cost. So without helping, there are Θ(m) extra steps that

need to be carried out, and with helping there is only O(1).

The current measures we have of contention, the point and interval contention, will not sep-

arate these cases. Some finer measure of contention is needed to capture this case, and show

when helping can really benefit an algorithm in an asymptotic sense. I believe that some of the

theory developed in Chapter 3 could be useful in determining and analysing a new measure

of contention that separates these two cases.

Another point to note is that the performance of the lock-free and lock-based structures changes

as the number of threads exceeds the number of hyperthreads or physical cores – lock-free

structures appear to hold a constant level of performance while the lock-based structures de-

teriorate rapidly. Currently we have no good way of analysing this, even though intuitively it

is something to do with contention: any context switch away from an operation holding a lock

will have a huge impact on performance.

Contention in other data structures

Throughout this work I have focused on linked lists, so that I could conduct an in-depth survey

and analyse the effects of contention thoroughly. However, linked lists are rarely used on their

own as search structures. Many search structures are built on linked lists, or factor linked lists

into their design. Perhaps the most obvious of these is a hash table using separate chaining,

where linked lists are used as the “buckets” which store elements with colliding hashes. The

algorithms described here can also be applied fairly directly to building concurrent skip lists,

ordered data structures with expected O(log n) operation times.

To the best of my knowledge, Fomitchev and Ruppert’s list has never been implemented be-

fore. Based on what I have observed, their algorithm performs a little slower than the Harris

list, but with the wait-free contains modification it comes very close to the Harris list perfor-

mance. It also has much better behaviour during highly contended workloads, as observed in

practice. This could make the Fomitchev and Ruppert list the ideal lock-free list of choice for

very low-latency applications.

In the same paper where they describe their list, Fomitchev and Ruppert also describe how

to apply the list algorithms to building a concurrent skip list. Based on what has been ex-

perimentally observed in Chapter 5, I would expect their skip list to have better asymptotic

performance under high contention than Fraser’s, a skip list built using the algorithms from

the Harris linked list [Fra04]. Contention in a skip list may be more realistic than contention

in a linked list, since it’s possible to have a number of processes on the order of log n even

for a very large data structure. Furthermore, a similar wait-free modification for the contains

CHAPTER 6. CONCLUSION 42

operation is applicable to the skip list, which could improve performance even more.

Memory reclamation

In all of the linked lists I have considered here, I have not included any memory reclamation

system. Memory reclamation is not straightforward in a highly concurrent environment, since

it is hard to tell when no other thread has a reference to an object, even when that object

has been removed from the data structure. Managed languages such as Java have a built-in

garbage collector which makes sure unreachable objects are cleaned up, but there are settings

where a garbage collector is either not available, or inappropriate (due, for example, to long

pauses while collecting). Furthermore, with every linked list in Chapter 4, when a thread

removes a node, it knows that no operations which start accessing the data structure after that

time will ever reach that node. It would be nice to be able to use this information.

One strategy for reclamation I used successfully on another lock-free data structure (not men-

tioned in this thesis) was based on a paradigm called read-copy-update (RCU) which is used

in the Linux kernel. The name is somewhat misleading: it’s mostly a strategy for concurrent

memory reclamation (although there are efforts to build concurrent data structures using it, for

example the tree in [AA14]). In the Linux kernel, there are some data structures which allow

any number of concurrent readers and at most one concurrent writer. The writer will acquire

a lock, read relevant portions of the structure, make a local copy, and then publish this copy by

performing an update on shared data. No synchronisation is required on the part of the readers.

Once this update is complete, the writer may be left with parts of the data structure which are

now unreachable. They cannot yet be discarded, as other operations may still be within the

data structure. So the update puts the unreachable objects on a list of items to be freed later.

There are userspace implementations of RCU, and while they can’t use all of the tricks that

the kernel uses to make RCU fast, they provide a regular interface to reclaiming memory.

Anywhere a sequential program would have called Free(v), a drop-in replacement can be used

which saves v to a per-thread reclamation list. Once an RCU grace period has passed, the

reclamation list can be considered safe, and nodes within it used again. This interface is in

contrast to methods of reclamation like hazard pointers, which are difficult to implement and

complicate the algorithm.

CHAPTER 6. CONCLUSION 43

6.2 Conclusions

The major contributions presented in this thesis are new theoretical results about measures of

contention, and an in-depth survey of high performance concurrent linked lists and their be-

haviour under contention. The theory of interval graphs was used to show that three currently

used measures of contention are equivalent, which was conjectured to be false in recent work.

This led to a simplified proof of the time complexity of a lock-free linked list, and the design

of a new list-based set algorithm that has the lowest amortised time complexity known for

lock-free list-based sets, and that outperforms all of the concurrent linked lists studied in the

majority of my experiments.

Six different concurrent linked lists were implemented in C, and their performance was eval-

uated under a wide range of conditions, showing that contention has an observable impact

on performance. The scaling properties of the lock-based and lock-free lists were explored,

showing that lock-free algorithms perform well regardless of the number of logical threads

and physical cores on the target machine, while lock-based algorithms are highly sensitive to

this. Finally, avenues to further this area of research have been given, including the investiga-

tion of new measures of contention, and building lock-free skip lists with memory reclamation

and good amortised time guarantees.

Bibliography

[AA14] Maya Arbel and Hagit Attiya. “Concurrent Updates with RCU: Search Tree as an

Example”. In: (2014).

[AF03] Hagit Attiya and Arie Fouren. “Algorithms adapting to point contention”. In: Jour-
nal of the ACM (JACM) 50.4 (2003), pp. 444–468.

[AST02] Yehuda Afek, Gideon Stupp, and Dan Touitou. “Long lived adaptive splitter and

applications”. In: Distributed Computing 15.2 (2002), pp. 67–86.

[CNT14] Bapi Chatterjee, Nhan Nguyen, and Philippas Tsigas. “Efficient lock-free binary

search trees”. In: Proceedings of the 2014 ACM symposium on Principles of distributed
computing. ACM. 2014, pp. 322–331.

[Ell+10] Faith Ellen et al. “Non-blocking binary search trees”. In: Proceedings of the 29th
ACM SIGACT-SIGOPS symposium on Principles of distributed computing. ACM. 2010,

pp. 131–140.

[Ell+14] Faith Ellen et al. “The amortized complexity of non-blocking binary search trees”.

In: Proceedings of the 2014 ACM symposium on Principles of distributed computing.

ACM. 2014, pp. 332–340.

[FR04] Mikhail Fomitchev and Eric Ruppert. “Lock-free linked lists and skip lists”. In:

Proceedings of the twenty-third annual ACM symposium on Principles of distributed com-
puting. ACM. 2004, pp. 50–59.

[Fra04] Keir Fraser. “Practical lock-freedom”. PhD thesis. University of Cambridge, 2004.

[GC96] Michael Greenwald and David Cheriton. “The synergy between non-blocking syn-

chronization and operating system structure”. In: ACM SIGOPS Operating Systems
Review 30.si (1996), pp. 123–136.

[GKR12] Vincent Gramoli, Petr Kuznetsov, and Srivatsan Ravi. “Brief announcement: From

sequential to concurrent: correctness and relative efficiency”. In: Proceedings of the
2012 ACM symposium on Principles of distributed computing. ACM. 2012, pp. 241–242.

[Gra+15] Vincent Gramoli et al. A Concurrency-Optimal List-Based Set. Tech. rep. abs/1502.01633.

arXiv, 2015.

44

BIBLIOGRAPHY 45

[Gra15] Vincent Gramoli. “More Than You Ever Wanted to Know About Synchronization:

Synchrobench, Measuring the Impact of Synchronisation on Concurrent Algorithms”.

In: PPoPP. 2015, pp. 1–10.

[Har01] Timothy L Harris. “A pragmatic implementation of non-blocking linked-lists”. In:

Distributed Computing. Springer, 2001, pp. 300–314.

[Hel+06] Steve Heller et al. “A lazy concurrent list-based set algorithm”. In: Principles of Dis-
tributed Systems. Springer, 2006, pp. 3–16.

[Her91] Maurice Herlihy. “Wait-free synchronization”. In: ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 13.1 (1991), pp. 124–149.

[Her93] Maurice Herlihy. “A methodology for implementing highly concurrent data ob-

jects”. In: ACM Transactions on Programming Languages and Systems (TOPLAS) 15.5

(1993), pp. 745–770.

[HLM03] Maurice Herlihy, Victor Luchangco, and Mark Moir. “Obstruction-free synchro-

nization: Double-ended queues as an example”. In: Distributed Computing Systems,
2003. Proceedings. 23rd International Conference on. IEEE. 2003, pp. 522–529.

[HS12] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming, Revised
Reprint. Elsevier, 2012.

[HW13] Philip W Howard and Jonathan Walpole. “Relativistic red-black trees”. In: Concur-
rency and Computation: Practice and Experience (2013).

[HW90] Maurice P Herlihy and Jeannette M Wing. “Linearizability: A correctness condition

for concurrent objects”. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 12.3 (1990), pp. 463–492.

[OS13] Rotem Oshman and Nir Shavit. “The SkipTrie: low-depth concurrent search with-

out rebalancing”. In: Proceedings of the 2013 ACM symposium on Principles of dis-
tributed computing. ACM. 2013, pp. 23–32.

[Pug90] William Pugh. “Skip lists: a probabilistic alternative to balanced trees”. In: Commu-
nications of the ACM 33.6 (1990), pp. 668–676.

[Sco13] Michael L. Scott. Shared-Memory Synchronization. Ed. by Mark D. Hill. Synthesis

Lectures on Computer Architecture 23. Morgan & Claypool Publishers, 2013.

[TSP92] John Turek, Dennis Shasha, and Sundeep Prakash. “Locking without blocking:

making lock based concurrent data structure algorithms nonblocking”. In: Pro-
ceedings of the eleventh ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems. ACM. 1992, pp. 212–222.

[Val95] John D Valois. “Lock-free linked lists using compare-and-swap”. In: Proceedings of
the fourteenth annual ACM symposium on Principles of distributed computing. ACM.

1995, pp. 214–222.

	Introduction
	Contributions

	Background
	Desirable properties of concurrent data structures
	Implementation of non-blocking data structures
	Contention
	Concurrent search structures

	Measures of contention
	Model
	The interval graph and simplicial vertices
	Equivalence of overall point and interval contention
	Bounds for overall process and overlapping-interval contention
	Conclusion

	Linked Lists
	Harris' List
	Fomitchev & Ruppert's List
	A modification of Fomitchev & Ruppert's list
	The Lazy List
	The Versioned List
	The Universal Construction

	Experimental Evaluation
	Experimental settings
	A standard workload
	The effects of contention
	The modification of Fomitchev & Ruppert's list
	Summary of experimental results

	Conclusion
	Future Work
	Conclusions

